Tuesday, 7 February 2017

Moyenne Mobile Solution

Les OR-Notes sont une série de notes d'introduction sur des sujets qui relèvent de la vaste rubrique du domaine de la recherche opérationnelle (OR). Ils ont été utilisés à l'origine par moi dans un cours d'introduction OU je donne à l'Imperial College. Ils sont maintenant disponibles pour l'utilisation par tous les étudiants et enseignants intéressés dans OR sous réserve des conditions suivantes. Vous trouverez une liste complète des sujets disponibles dans OR-Notes ici. Exemples de prévision Exemple de prévision Examen UG 1996 La demande pour un produit au cours des cinq derniers mois est présentée ci-dessous. Utiliser une moyenne mobile de deux mois pour générer une prévision de la demande au mois 6. Appliquer un lissage exponentiel avec une constante de lissage de 0,9 pour générer une prévision de la demande de la demande au mois 6. Quelle de ces deux prévisions préférez-vous et pourquoi? La moyenne pour les mois deux à cinq est donnée par: La prévision pour le sixième mois est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile pour le mois 5 m 5 2350. En appliquant le lissage exponentiel avec une constante de lissage de 0,9 nous obtenons: La prévision pour le sixième mois est juste la moyenne pour le mois 5 M 5 2386 Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si on le fait, on trouve que pour la moyenne mobile MSD (15 - 19) sup2 (18-23) sup2 (21-24) sup23 16.67 et pour la moyenne exponentiellement lissée avec une constante de lissage de 0.9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Dans l'ensemble, nous voyons que le lissage exponentiel semble donner les meilleures prévisions d'un mois à l'avance car il a une MSD plus faible. Nous préférons donc la prévision de 2386 qui a été produite par lissage exponentiel. Exemple de prévision 1994 UG examen Le tableau ci-dessous montre la demande pour un nouvel après-rasage dans un magasin pour chacun des 7 derniers mois. Calculer une moyenne mobile de deux mois pour les mois deux à sept. Quelle serait votre prévision pour la demande au mois huit Appliquer lissage exponentiel avec une constante de lissage de 0,1 pour obtenir une prévision de la demande au mois huit. Laquelle des deux prévisions pour le mois huit préférez-vous et pourquoi Le magasinier croit que les clients se tournent vers ce nouvel après-rasage d'autres marques. Discutez de la façon dont vous pourriez modeler ce comportement de commutation et indiquer les données dont vous auriez besoin pour confirmer si cette commutation se produit ou non. La moyenne mobile de deux mois pour les mois deux à sept est donnée par: La prévision pour le mois huit est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile pour le mois 7 m 7 46. Appliquant lissage exponentiel avec une constante de lissage de 0,1 nous Get: Comme avant la prévision pour le mois huit est juste la moyenne pour le mois 7 M 7 31,11 31 (car nous ne pouvons pas avoir la demande fractionnée). Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si nous faisons cela, nous constatons que pour la moyenne mobile et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,1 Ensuite, nous voyons que la moyenne mobile de deux mois semble donner les meilleures prévisions d'un mois à venir, car il a une MSD plus faible. Nous préférons donc la prévision de 46 qui a été produite par la moyenne mobile de deux mois. Pour examiner la commutation nous devrions utiliser un modèle de processus de Markov, où les marques d'états et nous aurions besoin d'information d'état initiale et de probabilités de commutation de client (des enquêtes). Nous aurions besoin d'exécuter le modèle sur les données historiques pour voir si nous avons un ajustement entre le modèle et le comportement historique. Exemple de prévision 1992 Examen UG Le tableau ci-dessous montre la demande pour une marque particulière de rasoir dans un magasin pour chacun des neuf derniers mois. Calculer une moyenne mobile de trois mois pour les trois à neuf mois. Quelle serait votre prévision pour la demande dans le mois dix Appliquer lissage exponentiel avec une constante de lissage de 0,3 pour dériver une prévision de la demande au mois dix. Quelle est la moyenne mobile pour les mois 3 à 9 donnée par: La prévision pour le mois 10 est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile pour le mois 9 m 9 20,33. Si l'on applique un lissage exponentiel avec une constante de lissage de 0,3 on obtient: Comme précédemment, la prévision pour le mois 10 est juste la moyenne pour le mois 9 M 9 18,57 19 (comme nous le pouvons) Ne peut pas avoir de demande fractionnée). Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si nous le faisons, nous constatons que pour la moyenne mobile et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,3 Ensuite, nous voyons que la moyenne mobile de trois mois semble donner les meilleures prévisions d'un mois à venir, car il a une MSD plus faible. Nous préférons donc la prévision de 20 qui a été produite par la moyenne mobile de trois mois. Exemple de prévision 1991 UG examen Le tableau ci-dessous montre la demande pour une marque particulière de télécopieur dans un grand magasin au cours des douze derniers mois. Calculer la moyenne mobile de quatre mois pour les mois 4 à 12. Quelle serait votre prévision pour la demande au mois 13 Appliquer lissage exponentiel avec une constante de lissage de 0,2 pour dériver une prévision de la demande dans le mois 13. Quelles sont les deux prévisions pour le mois 13 La moyenne mobile sur quatre mois pour les mois 4 à 12 est donnée par: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 4 46,25 La prévision pour le mois 13 est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile Pour le mois 12 m 12 46.25. Si l'on applique un lissage exponentiel avec une constante de lissage de 0,2, on obtient: Comme précédemment, la prévision pour le mois 13 est juste la moyenne pour le mois 12 M 12 38,618 39 (comme nous le pouvons) Ne peut pas avoir de demande fractionnée). Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si nous faisons cela, nous constatons que pour la moyenne mobile et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,2 Ensuite, nous voyons que la moyenne mobile de quatre mois semble donner les meilleures prévisions d'un mois à venir, car il a une MSD plus faible. Nous préférons donc la prévision de 46 qui a été produite par la moyenne mobile de quatre mois. La demande saisonnière des changements de prix de la publicité, à la fois cette marque et d'autres marques situation économique générale nouvelle technologie Exemple de prévision 1989 UG examen Le tableau ci-dessous montre la demande pour une marque particulière de four à micro-ondes dans un grand magasin au cours des douze derniers mois. Calculer une moyenne mobile de six mois pour chaque mois. Quelle serait votre prévision pour la demande au mois 13 Appliquer le lissage exponentiel avec une constante de lissage de 0,7 pour dériver une prévision de la demande dans le mois 13. Quelles sont les deux prévisions pour le mois 13 préférez-vous et pourquoi Maintenant, nous ne pouvons pas calculer un six Mois jusqu'à ce que nous ayons au moins 6 observations - c'est-à-dire que nous pouvons seulement calculer une telle moyenne à partir du mois 6 en avant. Nous avons donc: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 La prévision pour le mois 13 est juste la moyenne mobile pour le Mois avant ce qui est la moyenne mobile pour le mois 12 m 12 38,17. Si l'on applique un lissage exponentiel avec une constante de lissage de 0,7, on obtient: Exemple: Pour chacun des modèles de l'exercice 3.1 et pour les modèles suivants, Est (a) stationnaire (b) inversible. Solution: Ce sont tous des modèles ARMA, donc la stationnarité tient si et seulement si les racines de l'équation AR sont toutes en dehors du cercle unitaire, et l'invertibilité si et seulement si les racines de l'équation MA sont toutes en dehors du cercle unitaire. Note: Les auteurs écrivent tout le temps pour souligner que vous devez prendre la moyenne pour ces modèles. Nous allons simplement écrire Z t et supposons que tout est moyen. La racine (s) de l'équation caractéristique autorégressive est (sont), en dehors du cercle unitaire. Par conséquent, le processus est stationnaire. Les racines de l'équation caractéristique moyenne mobile forment un ensemble vide, donc toutes les racines sont vides à l'extérieur du cercle unitaire. En d'autres termes (dans la langue utilisée dans la leçon), il n'y a pas de racines de on ou in the unit circle. Par conséquent, le processus est inversible. Les racines de l'équation caractéristique autorégressive forment un ensemble vide, donc toutes les racines sont vides à l'extérieur du cercle unitaire. En d'autres termes (dans la langue utilisée dans la leçon), il n'y a pas de racines de on ou in the unit circle. Par conséquent, le processus est stationnaire. Les racines de l'équation caractéristique moyenne mobile peuvent être déterminées par affacturage: Les deux racines sont en dehors du cercle unitaire. Par conséquent, le processus est inversible. La racine de l'équation caractéristique autorégressive est, en dehors du cercle unitaire. Par conséquent, le processus est stationnaire. L'opérateur de moyenne mobile est le même que dans le modèle 2, donc le processus est inversible. Les racines de l'équation caractéristique autorégressive Le module au carré de ces racines conjuguées complexes se trouve en dehors du cercle unitaire. Par conséquent, le processus est stationnaire. Rappelons que le produit des racines réciproques est le module au carré et égal au coefficient de v 2, soit 0,6 dans ce cas, donc le module Carré est de 10,6 gt 1.) Le processus est inversible comme dans le modèle 1. La racine de l'équation caractéristique autorégressive est, sur le cercle unitaire. Par conséquent, le processus n'est pas stationnaire. La racine du polynôme caractéristique de la moyenne mobile est v 2, en dehors du cercle unitaire. Par conséquent, le procédé est inversible. La racine de l'équation caractéristique autorégressive est, sur le cercle unitaire. Par conséquent, le processus n'est pas stationnaire. Les racines de l'équation caractéristique de la moyenne mobile peuvent être déterminées par affacturage: J'ai une valeur continue pour laquelle Id veut calculer une moyenne mobile exponentielle. Normalement Id juste utiliser la formule standard pour cela: où S n est la nouvelle moyenne, alpha est l'alpha, Y est l'échantillon, et S n-1 est la moyenne précédente. Malheureusement, en raison de diverses questions, je n'ai pas un temps d'échantillonnage cohérent. Je sais peut-être que je peux échantillonner au plus, disons, une fois par milliseconde, mais en raison de facteurs hors de mon contrôle, je ne peux pas être en mesure de prendre un échantillon de plusieurs millisecondes à la fois. Un cas probablement plus courant, cependant, est que je sample simple un peu tôt ou tard: au lieu d'échantillonnage à 0, 1 et 2 ms. I échantillon à 0, 0,9 et 2,1 ms. Je prévois que, indépendamment des retards, ma fréquence d'échantillonnage sera très, bien au-dessus de la limite de Nyquist, et donc je n'ai pas besoin de s'inquiéter d'aliasing. Je pense que je peux faire face à cela d'une manière plus ou moins raisonnable en faisant varier l'alpha de façon appropriée, en fonction de la durée écoulée depuis le dernier échantillon. Une partie de mon raisonnement que cela fonctionnera, c'est que l'EMA interpole linéairement entre le point de données précédent et le courant. Si l'on considère le calcul d'une EMA de la liste suivante d'échantillons aux intervalles t: 0,1,2,3,4. Nous devrions obtenir le même résultat si nous utilisons l'intervalle 2t, où les entrées deviennent 0,2,4, à droite Si l'EMA avait supposé que, à t 2, la valeur avait été 2 depuis t 0. Qui serait le même que l'intervalle t calculant sur 0,2,2,4,4, ce que ne fait pas. Ou est-ce que le sens du tout Peut-on me dire comment varier l'alpha de façon appropriée S'il vous plaît montrer votre travail. C'est à dire. Montrez-moi les maths qui prouvent que votre méthode est vraiment faire la bonne chose. Vous ne devriez pas obtenir le même EMA pour les différentes entrées. Pensez à EMA comme un filtre, l'échantillonnage à 2t équivaut à l'échantillonnage descendant, et le filtre va donner une sortie différente. Cela me paraît évident puisque 0,2,4 contient des composantes de fréquence plus élevée que 0,1,2,3,4. Sauf si la question est, comment puis-je changer le filtre à la volée pour lui donner la même sortie. Peut-être que je manque quelque chose ndash freespace Jun 21 09 at 15:52 Mais l'entrée n'est pas différente, il a juste échantillonné moins souvent. 0,2,4 à intervalles 2t est comme 0,, 2,, 4 aux intervalles t, où l'indique que l'échantillon est ignoré ndash Curt Sampson Jun 21 09 à 23:45 Cette réponse basée sur ma bonne compréhension du passe-bas Filtres (moyenne mobile exponentielle est vraiment juste un filtre passe-bas unipolaire), mais ma compréhension floue de ce que vous cherchez. Je pense que ce qui suit est ce que vous voulez: Tout d'abord, vous pouvez simplifier votre équation un peu (semble plus compliqué, mais son plus facile dans le code). Je vais utiliser Y pour la sortie et X pour l'entrée (au lieu de S pour la sortie et Y pour l'entrée, comme vous l'avez fait). Deuxièmement, la valeur de alpha ici est égale à 1-e-Dtatattau où Deltat est le temps entre les échantillons, et tau est la constante de temps du filtre passe-bas. Je dis égale entre guillemets parce que cela fonctionne bien quand Deltattau est petit par rapport à 1, et alpha 1-e-Delatattau asymp Deltattau. (Mais pas trop petit: vous allez rencontrer des problèmes de quantification, et à moins que vous ne recourriez à certaines techniques exotiques, vous avez généralement besoin de N bits supplémentaires de résolution dans votre variable d'état S, où N - log 2 (alpha).) Pour des valeurs plus grandes de Deltattau L'effet de filtrage commence à disparaître, jusqu'à ce que vous arrivez au point où l'alpha est proche de 1 et vous êtes essentiellement simplement d'assigner l'entrée à la sortie. Cela devrait fonctionner correctement avec des valeurs variables de Deltat (la variation de Deltat n'est pas très importante tant que alpha est petit, sinon vous rencontrerez quelques problèmes de Nyquist plutôt étranges aliasing etc.) et si vous travaillez sur un processeur où la multiplication Est moins cher que la division, ou les questions à point fixe sont importantes, precalculate omega 1tau, et envisager d'essayer d'approcher la formule de l'alpha. Si vous voulez vraiment savoir comment dériver la formule alpha 1-e-Daltaattau, alors considérez sa source d'équations différentielles: qui, lorsque X est une fonction d'étape unitaire, a la solution Y 1 - e - ttau. Pour les petites valeurs de Deltat, la dérivée peut être approchée par DeltaYDeltat, donnant Y tau DeltaYDeltat X DeltaY (XY) (Deltattau) alpha (XY) et l'extrapolation de alpha 1-e - Dettaatta provient d'essayer de faire correspondre le comportement avec le Cas de fonction d'étape d'unité. Vous voudrez peut-être élaborer sur le quottrying pour correspondre à la partie behaviour. Je comprends votre solution en temps continu Y 1 - exp (-t47) et sa généralisation à une fonction step échelonnée avec magnitude x et condition initiale y (0). Mais je ne vois pas comment mettre ces idées ensemble pour atteindre votre résultat. Ndash Rhys Ulerich May 4 13 à 22:34 Ceci n'est pas une réponse complète, mais peut être le début d'un. Son autant que j'ai obtenu avec cela dans une heure ou deux de jouer Im affichant comme un exemple de ce que je cherche, et peut-être une inspiration pour d'autres travaillant sur le problème. Je commence par S 0. Qui est la moyenne résultant de la moyenne précédente S -1 et de l'échantillon Y 0 pris à t 0. (T 1 - t 0) est mon intervalle d'échantillonnage et alpha est fixé à ce qui est approprié pour cet intervalle d'échantillonnage et la période sur laquelle je souhaite faire la moyenne. J'ai réfléchi à ce qui se passerait si je manquais l'échantillon à t 1 et au lieu de me contenter de me contenter de l'échantillon Y 2 pris à t 2. Eh bien, on peut commencer par étendre l'équation pour voir ce qui serait arrivé si on avait eu Y 1: Je remarque que la série semble s'étendre infiniment de cette façon, parce que nous pouvons substituer le S n à la droite indéfiniment: Ok , Donc ce n'est pas vraiment un polynôme (idiot moi), mais si nous multiplions le terme initial par un, nous voyons alors un modèle: Hm: sa une série exponentielle. Quelle surprise Imaginez que sortir de l'équation pour une moyenne mobile exponentielle So anyway, j'ai cette x 0 x 1 x 2 x 3. Chose va, Im et Im Im odeur e ou un logarithme naturel coups de pied ici, mais je ne peux pas me rappeler où je me dirigeais avant que je me suis écoulé du temps. Toute réponse à cette question, ou toute preuve d'exactitude d'une telle réponse, dépend fortement des données que vous mesurez. Si vos échantillons ont été pris à t 0 0 ms. T 1 0,9ms et t 2 2,1ms. Mais votre choix d'alpha est basé sur des intervalles de 1 ms, et donc vous voulez un alpha localement ajusté n. La preuve de l'exactitude du choix signifierait connaître les valeurs d'échantillonnage à t1ms et t2ms. Cela vous amène à la question suivante: Pouvez-vous interpoler vos données de manière raisonnable pour avoir des suppositions saines de ce que les valeurs intermédiaires auraient pu être Ou pouvez-vous même interpoler la moyenne elle-même Si ni l'un ni l'autre de ces est possible, Le choix d'une valeur intermédiaire Y (t) est la moyenne calculée la plus récemment. À savoir Y (t) asymp S n où n est maxmial tel que t n ltt. Ce choix a une conséquence simple: Laissez l'alpha seul, quelle que soit la différence de temps. Si, d'autre part, il est possible d'interpoler vos valeurs, cela vous donnera des échantillons d'intervalle constant moyennables. Enfin, s'il est même possible d'interpoler la moyenne elle-même, cela rendrait la question sans signification. J'ai pensé que je peux interpoler mes données: étant donné que I39m échantillonnage à intervalles discrets, I39m déjà le faire avec une norme EMA Anyway, je suppose que j'ai besoin Un quotproofquot qui montre qu'il fonctionne aussi bien qu'un EMA standard, qui a également produit un résultat incorrect si les valeurs ne changent pas assez facilement entre les périodes d'échantillon. Si vous considérez l'EMA comme une interpolation de vos valeurs, vous avez terminé si vous laissez l'alpha tel qu'il est (parce que l'insertion de la moyenne la plus récente comme Y ne change pas la moyenne) . Si vous dites que vous avez besoin de quelque chose qui fonctionne aussi bien qu'un EMA standard - ce qui ne va pas avec l'original Sauf si vous avez plus d'informations sur les données que vous mesurez, tous les ajustements locaux à alpha seront au mieux arbitraires. Ndash balpha 9830 Jun 21 09 at 15:31 Je laisserais la valeur alpha seul, et de remplir les données manquantes. Puisque vous ne savez pas ce qui se passe pendant le temps où vous ne pouvez pas échantillonner, vous pouvez remplir ces échantillons avec 0s, ou tenir la valeur précédente stable et utiliser ces valeurs pour l'EMA. Ou une interpolation arrière une fois que vous avez un nouvel échantillon, remplissez les valeurs manquantes, et recomputer l'EMA. Ce que j'essaie d'obtenir est que vous avez une entrée xn qui a des trous. Il n'existe aucun moyen de contourner le fait que vous manquez des données. Ainsi, vous pouvez utiliser un maintien d'ordre zéro, ou le mettre à zéro, ou une sorte d'interpolation entre xn et xnM. Où M est le nombre d'échantillons manquants et n le début de l'écart. Peut-être même en utilisant des valeurs avant n. Réponse June 21 09 at 13:35 De passer une heure ou ainsi de mucking un peu avec les mathématiques pour cela, je pense que simplement varier l'alpha me donnera réellement l'interpolation appropriée entre les deux points dont vous parlez, mais dans un Beaucoup plus simple. En outre, je pense que la variation de l'alpha traitera aussi correctement les échantillons prélevés entre les intervalles d'échantillonnage standard. En d'autres termes, je cherche ce que vous avez décrit, mais en essayant d'utiliser les mathématiques pour comprendre la façon simple de le faire. Ndash Curt Sampson Jun 21 09 at 14:07 Je ne pense pas qu'il ya une telle bête que interpolation quotproper. Vous ne savez tout simplement pas ce qui s'est passé dans le temps que vous n'êtes pas l'échantillonnage. Interpolation bonne et mauvaise implique une certaine connaissance de ce que vous avez manqué, puisque vous avez besoin de mesurer contre qui de juger si une interpolation est bonne ou mauvaise. Cela dit, vous pouvez placer des contraintes, c'est-à-dire avec une accélération maximale, une vitesse, etc. Je pense que si vous savez comment modéliser les données manquantes, alors vous modéliseriez simplement les données manquantes, puis appliquez l'algorithme EMA sans changement, plutôt Que de changer l'alpha. Just my 2c :) ndash freespace Jun 21 09 à 14:17 C'est exactement ce que je recevais dans ma modification à la question il ya 15 minutes: quotYou don39t simplement savoir ce qui s'est passé dans le temps que vous n'êtes pas l'échantillonnage, mais ce qui est vrai Même si vous prenez un échantillon à chaque intervalle désigné. Ainsi ma contemplation de Nyquist: tant que vous savez que la forme d'onde ne change pas de direction plus que chaque couple d'échantillons, l'intervalle d'échantillonnage réel ne devrait pas être important et devrait être capable de varier. L'équation EMA me semble exactement calculer comme si la forme d'onde a changé linéairement de la dernière valeur d'échantillon à la courante. Ndash Curt Sampson Jun 21 09 at 14:26 Je ne pense pas que c'est tout à fait vrai. Le théorème de Nyquist requiert un minimum de 2 échantillons par période pour pouvoir identifier le signal de manière unique. Si vous ne faites pas cela, vous obtenez aliasing. Il serait le même que l'échantillonnage comme fs1 pour un temps, puis fs2, puis retour à fs1, et vous obtenez aliasing dans les données lorsque vous échantillons avec fs2 si fs2 est en dessous de la limite de Nyquist. Je dois également avouer que je ne comprends pas ce que vous entendez par quotwaveform changements linéairement de l'échantillon précédent à l'actuel onequot. Pourriez-vous s'il vous plaît expliquer Cheers, Steve. Ndash freespace Jun 21 09 at 14:36 ​​Ceci est similaire à un problème ouvert sur ma liste de tâches. J'ai un schéma élaboré dans une certaine mesure, mais n'ont pas de travail mathématique à l'appui de cette suggestion encore. Mise à jour du résumé de l'ampli: Souhaitez garder le facteur de lissage (alpha) indépendant du facteur de compensation (que je désigne ici comme bêta). Jasons excellente réponse déjà acceptée ici fonctionne très bien pour moi. Si vous pouvez également mesurer le temps écoulé depuis le dernier échantillon (en multiples arrondis de votre temps d'échantillonnage constant - donc 7,8 ms depuis le dernier échantillon serait de 8 unités), qui pourrait être utilisé pour appliquer le lissage plusieurs fois. Appliquer la formule 8 fois dans ce cas. Vous avez effectivement fait un lissage biaisé plus vers la valeur actuelle. Pour obtenir un meilleur lissage, nous avons besoin de tordre l'alpha tout en appliquant la formule 8 fois dans le cas précédent. Ce que cette approximation de lissage manquera Il a déjà manqué 7 échantillons dans l'exemple ci-dessus Ceci a été approché à l'étape 1 avec une réapplication aplatie de la valeur courante de 7 fois supplémentaires Si nous définissons un facteur d'approximation bêta qui sera appliqué avec l'alpha (Comme alphabeta au lieu d'alpha), nous allons supposer que les 7 échantillons manqués ont été en douceur entre les valeurs de l'échantillon précédent et actuel. J'ai réfléchi à ce sujet, mais un peu de bouger avec les mathématiques m'a fait au point où je crois que, plutôt que d'appliquer la formule de huit fois avec la valeur de l'échantillon, je peux faire un calcul D'un nouvel alpha qui me permettra d'appliquer la formule une fois, et me donner le même résultat. De plus, cela traiterait automatiquement de la question des échantillons compensés par les temps d'échantillonnage exacts. Ndash Curt Sampson Jun 21 09 at 13:47 La demande unique est très bien. Ce dont je ne suis pas sûr, c'est la bonne approximation des 7 valeurs manquantes. Si le mouvement continu fait la gigue de la valeur beaucoup sur les 8 millisecondes, les approximations peuvent être tout à fait hors de la réalité. Mais, si vous échantillonniez à 1ms (la plus haute résolution en excluant les échantillons retardés), vous avez déjà calculé que la gigue en 1 ms n'est pas pertinente. Ce raisonnement fonctionne-t-il pour vous (j'essaie toujours de me convaincre). Ndash nik Jun 21 09 at 14:08 Droit. C'est le facteur bêta de ma description. Un facteur bêta serait calculé en fonction de l'intervalle de différence et des échantillons actuels et précédents. Le nouvel alpha sera (alphabeta) mais il sera utilisé uniquement pour cet échantillon. Alors que vous semblez être en train de modifier l'alpha dans la formule, je tend vers l'alpha constant (facteur de lissage) et un bêta calculé indépendamment (un facteur d'accord) qui compense les échantillons manqués tout à l'heure. Ndash nik 21 juin à 15:23


No comments:

Post a Comment